Some new coanalytic complete collections of continua in cubes

K. Królicki P. Krupski

Department of Mathematics and Computer Science University of Wrocław

Winter School in Abstract Analysis 2015 Section Set Theory and Topology

C property

- A space X is said to have property C if X has at least three points and for any distinct a, b, c ∈ X there exists a continuum K ⊆ X containing a and exactly one of the points b, c.
- If every non-degenerate subcontinuum of *X* has property C, then *X* is said to have property **C hereditarily**.
- A C-continuum is a continuum that has property C. A CH-continuum is a continuum that has property C hereditarily.

- A space X is said to have property C if X has at least three points and for any distinct a, b, c ∈ X there exists a continuum K ⊆ X containing a and exactly one of the points b, c.
- If every non-degenerate subcontinuum of *X* has property C, then *X* is said to have property **C hereditarily**.
- A C-continuum is a continuum that has property C. A CH-continuum is a continuum that has property C hereditarily.

C property

- A space X is said to have property C if X has at least three points and for any distinct a, b, c ∈ X there exists a continuum K ⊆ X containing a and exactly one of the points b, c.
- If every non-degenerate subcontinuum of *X* has property C, then *X* is said to have property **C hereditarily**.
- A C-continuum is a continuum that has property C. A CH-continuum is a continuum that has property C hereditarily.

C property

- A space X is said to have property C if X has at least three points and for any distinct a, b, c ∈ X there exists a continuum K ⊆ X containing a and exactly one of the points b, c.
- If every non-degenerate subcontinuum of *X* has property C, then *X* is said to have property **C hereditarily**.
- A C-continuum is a continuum that has property C. A CH-continuum is a continuum that has property C hereditarily.

C property Examples

- Every arcwise connected space *X* has property C.
- Topological sine curve $S = \{(x, sin(\frac{1}{x})) : x \in (0, 1]\}$ is not a C-continuum.
- However, $S \times [0, 1]$ is a C-continuum.

C property Examples

- Every arcwise connected space X has property C.
- Topological sine curve $S = \{(x, sin(\frac{1}{x})) : x \in (0, 1]\}$ is not a C-continuum.
- However, $S \times [0, 1]$ is a C-continuum.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

C property Examples

- Every arcwise connected space X has property C.
- Topological sine curve $S = \{(x, sin(\frac{1}{x})) : x \in (0, 1]\}$ is not a C-continuum.
- However, $S \times [0, 1]$ is a C-continuum.

C property Examples

- Every arcwise connected space X has property C.
- Topological sine curve $S = \{(x, sin(\frac{1}{x})) : x \in (0, 1]\}$ is not a C-continuum.
- However, $S \times [0, 1]$ is a C-continuum.

Unicoherence

Definitions

- A continuum *X* is called **unicoherent** if for any subcontinua $A, B \subseteq X, A \cup B = X \Rightarrow A \cap B$ is connected.
- *X* is called **hereditarily unicoherent** if every subcontinuum of *X* is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

Unicoherence

Definitions

- A continuum X is called unicoherent if for any subcontinua A, B ⊆ X, A ∪ B = X ⇒ A ∩ B is connected.
- *X* is called **hereditarily unicoherent** if every subcontinuum of *X* is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

Unicoherence

Definitions

- A continuum X is called unicoherent if for any subcontinua A, B ⊆ X, A ∪ B = X ⇒ A ∩ B is connected.
- X is called **hereditarily unicoherent** if every subcontinuum of X is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

(日) (日) (日) (日) (日) (日) (日)

Unicoherence

Definitions

- A continuum X is called unicoherent if for any subcontinua A, B ⊆ X, A ∪ B = X ⇒ A ∩ B is connected.
- X is called **hereditarily unicoherent** if every subcontinuum of X is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

(日) (日) (日) (日) (日) (日) (日)

Unicoherence

Definitions

- A continuum X is called unicoherent if for any subcontinua A, B ⊆ X, A ∪ B = X ⇒ A ∩ B is connected.
- X is called **hereditarily unicoherent** if every subcontinuum of X is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

Unicoherence

Definitions

- A continuum X is called unicoherent if for any subcontinua A, B ⊆ X, A ∪ B = X ⇒ A ∩ B is connected.
- X is called **hereditarily unicoherent** if every subcontinuum of X is unicoherent.
- A continuum X is irreducible if it is irreducible between some two of its points, i.e. for some points x, y ∈ X, X does not contain a proper subcontinuum containing x, y.

Characterisations

We have the following characterisations using the property C.

Theorem

- An irreducible C-continuum is an arc. [B.E.Wilder, 1968]
- A homogeneous C-continuum is a simple closed curve. [B.E.Wilder, 1992]

Now from these we get the following fact:

Fact

Characterisations

We have the following characterisations using the property C.

Theorem

An irreducible C-continuum is an arc. [B.E.Wilder, 1968]

A homogeneous C-continuum is a simple closed curve. [B.E.Wilder, 1992]

Now from these we get the following fact:

Fact

Characterisations

We have the following characterisations using the property C.

Theorem

- An irreducible C-continuum is an arc. [B.E.Wilder, 1968]
- A homogeneous C-continuum is a simple closed curve. [B.E.Wilder, 1992]

Now from these we get the following fact:

Fact

Characterisations

We have the following characterisations using the property C.

Theorem

- An irreducible C-continuum is an arc. [B.E.Wilder, 1968]
- A homogeneous C-continuum is a simple closed curve. [B.E.Wilder, 1992]

Now from these we get the following fact:

Fact

Definition

A **dendroid** is an arcwise connected and hereditarily unicoherent continuum.

From the previous fact we may notice the following characterisation of dendroids:

Fact

A space X is a dendroid \iff X is a hereditarily unicoherent C-continuum.

Notation:

Definition

A **dendroid** is an arcwise connected and hereditarily unicoherent continuum.

From the previous fact we may notice the following characterisation of dendroids:

Fact

A space X is a dendroid \iff X is a hereditarily unicoherent C-continuum.

Notation:

Definition

A **dendroid** is an arcwise connected and hereditarily unicoherent continuum.

From the previous fact we may notice the following characterisation of dendroids:

Fact

A space X is a dendroid \iff X is a hereditarily unicoherent C-continuum.

Notation:

Definition

A **dendroid** is an arcwise connected and hereditarily unicoherent continuum.

From the previous fact we may notice the following characterisation of dendroids:

Fact

A space X is a dendroid \iff X is a hereditarily unicoherent C-continuum.

Notation:

Coanalytic completeness

Definition

Let X be a space.

- A set $A \subseteq X$ is **coanalytic hard** if for any space Y and any set $B \in \Pi_1^1(Y)$ there exists a function $f : Y \longrightarrow X$ such that $f^{-1}[A] = B$.
- A coanalytic set A ⊆ X that is coanalytic hard is called coanalytic complete.

The Hurewicz set \mathcal{H} may be defined as follows:

$$\mathcal{H} = \{ A \in 2^{\mathfrak{C}} : (\forall x \in A) \text{ for almost all } n \in \mathbb{N}, x(n) = 0 \}$$

It is a known fact that the Hurewicz set is coanalytic complete.

Coanalytic completeness

Definition

Let X be a space.

- A set A ⊆ X is coanalytic hard if for any space Y and any set B ∈ Π¹₁(Y) there exists a function f : Y → X such that f⁻¹[A] = B.
- A coanalytic set A ⊆ X that is coanalytic hard is called coanalytic complete.

The Hurewicz set \mathcal{H} may be defined as follows:

$$\mathcal{H} = \{ A \in 2^{\mathfrak{C}} : (\forall x \in A) \text{for almost all } n \in \mathbb{N}, x(n) = 0 \}$$

It is a known fact that the Hurewicz set is coanalytic complete.

Coanalytic completeness

Definition

Let X be a space.

- A set $A \subseteq X$ is **coanalytic hard** if for any space Y and any set $B \in \Pi_1^1(Y)$ there exists a function $f : Y \longrightarrow X$ such that $f^{-1}[A] = B$.
- A coanalytic set A ⊆ X that is coanalytic hard is called coanalytic complete.

The Hurewicz set \mathcal{H} may be defined as follows:

$$\mathcal{H} = \{ A \in 2^{\mathfrak{C}} : (\forall x \in A) \text{ for almost all } n \in \mathbb{N}, x(n) = 0 \}$$

It is a known fact that the Hurewicz set is coanalytic complete.

Examples

- hereditarily decomposable continua in I^n , $n \in \{2, 3, ..., \infty\}$ [U.B. Darji, 2000];
- strongly countable dimensional continua in I^{∞} ;
- continua in I² which do not contain an arc [these 2 are due to P. Krupski, 2003];
- dendroids in $I^n, n \in \{2, 3, ..., \infty\}$ [R. Camerlo, U.B. Darji, A. Marcone, 2005].

Examples

- hereditarily decomposable continua in I^n , $n \in \{2, 3, ..., \infty\}$ [U.B. Darji, 2000];
- strongly countable dimensional continua in I^{∞} ;
- continua in I² which do not contain an arc [these 2 are due to P. Krupski, 2003];
- dendroids in $I^n, n \in \{2, 3, ..., \infty\}$ [R. Camerlo, U.B. Darji, A. Marcone, 2005].

Examples

- hereditarily decomposable continua in I^n , $n \in \{2, 3, ..., \infty\}$ [U.B. Darji, 2000];
- strongly countable dimensional continua in I[∞];
- continua in I² which do not contain an arc [these 2 are due to P. Krupski, 2003];
- dendroids in $I^n, n \in \{2, 3, ..., \infty\}$ [R. Camerlo, U.B. Darji, A. Marcone, 2005].

Examples

- hereditarily decomposable continua in I^n , $n \in \{2, 3, ..., \infty\}$ [U.B. Darji, 2000];
- strongly countable dimensional continua in I^{∞} ;
- continua in I² which do not contain an arc [these 2 are due to P. Krupski, 2003];
- dendroids in $I^n, n \in \{2, 3, ..., \infty\}$ [R. Camerlo, U.B. Darji, A. Marcone, 2005].

Examples

- hereditarily decomposable continua in I^n , $n \in \{2, 3, ..., \infty\}$ [U.B. Darji, 2000];
- strongly countable dimensional continua in I^{∞} ;
- continua in I² which do not contain an arc [these 2 are due to P. Krupski, 2003];
- dendroids in I^n , $n \in \{2, 3, ..., \infty\}$ [R. Camerlo, U.B. Darji, A. Marcone, 2005].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main result

Theorem

The set of all C-subcontinua of a cube I^n , $n \in \{2, 3, ..., \infty\}$ is coanalytic complete in $C(I^n)$.

Proof.

We can see that the set of all C-subcontinua in I^n is coanalytic when we write the formula defining it:

 $\mathcal{C} = \{ K \in I^n : (\forall x, y, z) (x \neq y, y \neq z, z \neq x \Rightarrow \\ \Rightarrow (\exists L \in C(K)) x \in L \land ((y \notin L, z \in L) \lor (y \in L, z \notin L))) \}$

Main result

Theorem

The set of all C-subcontinua of a cube I^n , $n \in \{2, 3, ..., \infty\}$ is coanalytic complete in $C(I^n)$.

Proof.

We can see that the set of all C-subcontinua in I^n is coanalytic when we write the formula defining it:

$$\begin{split} & \mathcal{C} = \{ K \in I^n : (\forall x, y, z) (x \neq y, y \neq z, z \neq x \Rightarrow \\ & \Rightarrow (\exists L \in C(K)) x \in L \land ((y \notin L, z \in L) \lor (y \in L, z \notin L))) \} \end{split}$$

Coanalytic hardness

Proof.

To show that \mathcal{C} is coanalytic hard, we use the fact that \mathcal{H} is coanalytic complete. Therefore it is enough to construct a continuous function $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ such that $f^{-1}[\mathcal{C}] = \mathcal{H}$. First we will construct a continuous function $f' : \mathfrak{C} \longrightarrow C(I^n)$. The aim for f' is to satisfy:

- $(\forall x, y \in \mathfrak{C}) x \neq y \Rightarrow f'(x) \cap f'(y) = \{0\} \times l;$
- 2) f'(x) is arcwise connected $\iff x(n) = 0$ for almost all n;
- If (x) is (almost) a topological sine curve ⇐⇒ x(n) = 1 for infinitely many n.

Coanalytic hardness

Proof.

To show that \mathcal{C} is coanalytic hard, we use the fact that \mathcal{H} is coanalytic complete. Therefore it is enough to construct a continuous function $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ such that $f^{-1}[\mathcal{C}] = \mathcal{H}$. First we will construct a continuous function $f' : \mathfrak{C} \longrightarrow C(I^n)$. The aim for f' is to satisfy:

$$(\forall x, y \in \mathfrak{C}) x \neq y \Rightarrow f'(x) \cap f'(y) = \{0\} \times I;$$

2) f'(x) is arcwise connected $\iff x(n) = 0$ for almost all n;

If '(x) is (almost) a topological sine curve ⇐⇒ x(n) = 1 for infinitely many n.

Coanalytic hardness

Proof.

To show that \mathcal{C} is coanalytic hard, we use the fact that \mathcal{H} is coanalytic complete. Therefore it is enough to construct a continuous function $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ such that $f^{-1}[\mathcal{C}] = \mathcal{H}$. First we will construct a continuous function $f' : \mathfrak{C} \longrightarrow C(I^n)$. The aim for f' is to satisfy:

$$(\forall x, y \in \mathfrak{C}) x \neq y \Rightarrow f'(x) \cap f'(y) = \{0\} \times I;$$

- 2 f'(x) is arcwise connected $\iff x(n) = 0$ for almost all n;
- If '(x) is (almost) a topological sine curve ⇐⇒ x(n) = 1 for infinitely many n.

Coanalytic hardness

Proof.

To show that \mathcal{C} is coanalytic hard, we use the fact that \mathcal{H} is coanalytic complete. Therefore it is enough to construct a continuous function $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ such that $f^{-1}[\mathcal{C}] = \mathcal{H}$. First we will construct a continuous function $f' : \mathfrak{C} \longrightarrow C(I^n)$. The aim for f' is to satisfy:

$$(\forall x, y \in \mathfrak{C}) x \neq y \Rightarrow f'(x) \cap f'(y) = \{0\} \times I;$$

- 2 f'(x) is arcwise connected $\iff x(n) = 0$ for almost all n;
- 3 f'(x) is (almost) a topological sine curve $\iff x(n) = 1$ for infinitely many n.

Proof.

Idea of construction: For a sequence $x \in \mathfrak{C}$, let

$f'(x) = \bigcap_{k \in \mathbb{N}} \{ \text{'Strips' } S_{x \restriction k} \text{ in the square} \} \cup (\{0\} \times I).$

Strip $S_{x \restriction k}$ is defined so that it makes as many 'turns' as there are $i \leq k$ so that x(i) = 1. That way, if there are infinitely many ones in x, then f'(x) makes infinitely many 'turns', so it is (almost) a topological sine curve. However, if almost all terms of x are 0, then at some point N at the formula of x and only became therefore in

strips $S_{x \upharpoonright N}$ is arcwise connected.

Proof.

Idea of construction: For a sequence $x \in \mathfrak{C}$, let

$f'(x) = \bigcap_{k \in \mathbb{N}} \{ \text{'Strips' } S_{x \restriction k} \text{ in the square} \} \cup (\{0\} \times I).$

Strip $S_{x \restriction k}$ is defined so that it makes as many 'turns' as there are $i \leq k$ so that x(i) = 1. That way, if there are infinitely many ones in x, then f'(x) makes infinitely many 'turns', so it is (almost) a topological sine curve. However, if almost all terms of x are 0, then at some point N at the formula of x and only became therefore in

strips $S_{x \upharpoonright N}$ is arcwise connected.

Proof.

Idea of construction: For a sequence $x \in \mathfrak{C}$, let

 $f'(x) = \bigcap_{k \in \mathbb{N}} \{ \text{'Strips' } S_{x \restriction k} \text{ in the square} \} \cup (\{0\} \times I).$

Strip $S_{x \upharpoonright k}$ is defined so that it makes as many 'turns' as there are $i \le k$ so that x(i) = 1. That way, if there are infinitely many ones in x, then f'(x) makes infinitely many 'turns', so it is (almost) a topological sine curve.

However, if almost all terms of x are 0, then at some point N strips $S_{x \mid N}$ 'stop turning' and only become thinner, therefore in this case f'(x) is arcwise connected.

Proof.

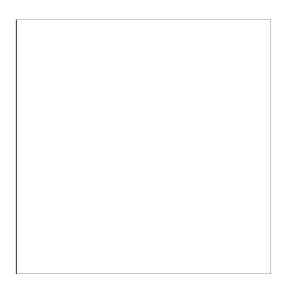
Idea of construction: For a sequence $x \in \mathfrak{C}$, let

 $f'(x) = \bigcap_{k \in \mathbb{N}} \{ \text{'Strips' } S_{x \restriction k} \text{ in the square} \} \cup (\{0\} \times I).$

Strip $S_{x|k}$ is defined so that it makes as many 'turns' as there are $i \le k$ so that x(i) = 1. That way, if there are infinitely many ones in x, then f'(x) makes infinitely many 'turns', so it is (almost) a topological sine curve.

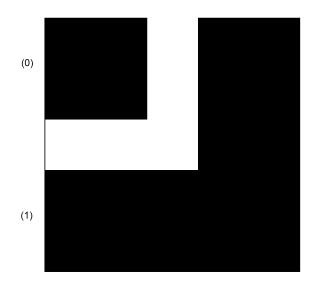
However, if almost all terms of *x* are 0, then at some point *N* strips $S_{x \upharpoonright N}$ 'stop turning' and only become thinner, therefore in this case f'(x) is arcwise connected.

Coanalytic hardness, continued



Corollaries

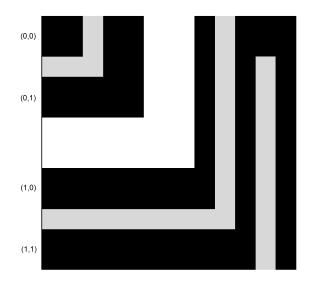
Coanalytic hardness, continued



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

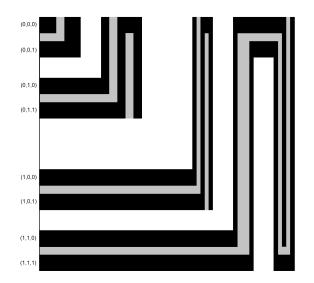
Corollaries

Coanalytic hardness, continued

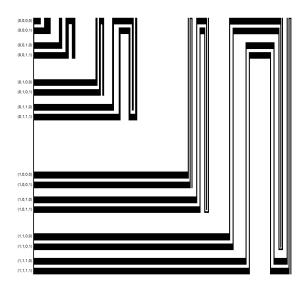


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Coanalytic hardness, continued



Coanalytic hardness, continued



Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \upharpoonright k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(*A*) is a continuum;
- *f* is continuous;

•
$$f^{-1}[\mathcal{C}] = \mathcal{H}.$$

Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \upharpoonright k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(A) is a continuum;
- *f* is continuous;

•
$$f^{-1}[\mathcal{C}] = \mathcal{H}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coanalytic hardness, continued

Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \upharpoonright k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(A) is a continuum;
- f is continuous;

• $f^{-1}[\mathcal{C}] = \mathcal{H}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Coanalytic hardness, continued

Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \mid k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(A) is a continuum;
- f is continuous;

•
$$f^{-1}[\mathcal{C}] = \mathcal{H}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Coanalytic hardness, continued

Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \mid k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(A) is a continuum;
- f is continuous;

•
$$f^{-1}[\mathcal{C}] = \mathcal{H}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Coanalytic hardness, continued

Proof.

Having defined f', let $f : 2^{\mathfrak{C}} \longrightarrow C(I^n)$ be defined as:

$$f(A) = \bigcup f'[A] = \bigcap_{k \in \mathbb{N}} \bigcup_{x \in A} S_{x \upharpoonright k} \cup (\{0\} \times I)$$

Now we may verify that:

- for A compact *f*(A) is a continuum;
- f is continuous;

•
$$f^{-1}[\mathcal{C}] = \mathcal{H}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Corollaries

This proof also yields that:

Theorem the set of CH-continua in Iⁿ, n ∈ {2,3,...,∞} is coanalytic hard; the set of dendroids in Iⁿ is coanalytic hard.

Combining this with the fact that dendroids are hereditarily unicoherent C-continua, we get the following:

Corollary

Corollaries

This proof also yields that:

Theorem

- the set of CH-continua in I^n , $n \in \{2, 3, ..., \infty\}$ is coanalytic hard;
- 2) the set of dendroids in Iⁿ is coanalytic hard.

Combining this with the fact that dendroids are hereditarily unicoherent C-continua, we get the following:

Corollary

(日) (日) (日) (日) (日) (日) (日)

Corollaries

This proof also yields that:

Theorem

- the set of CH-continua in I^n , $n \in \{2, 3, ..., \infty\}$ is coanalytic hard;
- the set of dendroids in Iⁿ is coanalytic hard.

Combining this with the fact that dendroids are hereditarily unicoherent C-continua, we get the following:

Corollary

Corollaries

This proof also yields that:

Theorem

- the set of CH-continua in I^n , $n \in \{2, 3, ..., \infty\}$ is coanalytic hard;
- the set of dendroids in Iⁿ is coanalytic hard.

Combining this with the fact that dendroids are hereditarily unicoherent C-continua, we get the following:

Corollary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you for your attention

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- R. Camerlo, U.B. Darji, A. Marcone *Classification problems* in continuum theory, Trans. of the Am. Math. Soc. vol.357 n.11:4301-4328, 2005;
- U.B. Darji Complexity of hereditarily decomposable continua, Topology and its Applications 103(2000) 243-248;
- P. Krupski More non-analytic classes of continua, Topology and its Applications 127(2003) 299-312;
- B.E. Wilder Concerning point sets with a special connectedness property, Colloquium Mathematicum vol. XIX:221–224, 1968.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- R. Camerlo, U.B. Darji, A. Marcone *Classification problems in continuum theory*, Trans. of the Am. Math. Soc. vol.357 n.11:4301-4328, 2005;
- U.B. Darji Complexity of hereditarily decomposable continua, Topology and its Applications 103(2000) 243-248;
- P. Krupski More non-analytic classes of continua, Topology and its Applications 127(2003) 299-312;
- B.E. Wilder Concerning point sets with a special connectedness property, Colloquium Mathematicum vol. XIX:221–224, 1968.

- R. Camerlo, U.B. Darji, A. Marcone *Classification problems in continuum theory*, Trans. of the Am. Math. Soc. vol.357 n.11:4301-4328, 2005;
- U.B. Darji Complexity of hereditarily decomposable continua, Topology and its Applications 103(2000) 243-248;
- P. Krupski More non-analytic classes of continua, Topology and its Applications 127(2003) 299-312;
- B.E. Wilder Concerning point sets with a special connectedness property, Colloquium Mathematicum vol. XIX:221–224, 1968.

- R. Camerlo, U.B. Darji, A. Marcone *Classification problems in continuum theory*, Trans. of the Am. Math. Soc. vol.357 n.11:4301-4328, 2005;
- U.B. Darji Complexity of hereditarily decomposable continua, Topology and its Applications 103(2000) 243-248;
- P. Krupski More non-analytic classes of continua, Topology and its Applications 127(2003) 299-312;
- B.E. Wilder Concerning point sets with a special connectedness property, Colloquium Mathematicum vol. XIX:221–224, 1968.