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C-Continua Coanalytic Completeness Corollaries

C property

Definitions (B.E. Wilder, 1968)
A space X is said to have property C if X has at least
three points and for any distinct a,b, c ∈ X there exists a
continuum K ⊆ X containing a and exactly one of the
points b, c.
If every non-degenerate subcontinuum of X has property
C, then X is said to have property C hereditarily.
A C-continuum is a continuum that has property C. A
CH-continuum is a continuum that has property C
hereditarily.
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Examples

Examples
Every arcwise connected space X has property C.

Topological sine curve S = {(x , sin( 1
x )) : x ∈ (0,1]} is not a

C-continuum.
However, S × [0,1] is a C-continuum.
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Unicoherence

Definitions
A continuum X is called unicoherent if for any
subcontinua A,B ⊆ X ,A ∪ B = X ⇒ A ∩ B is connected.
X is called hereditarily unicoherent if every
subcontinuum of X is unicoherent.
A continuum X is irreducible if it is irreducible between
some two of its points, i.e. for some points x , y ∈ X ,X
does not contain a proper subcontinuum containing x , y .

Question: is there a hereditarily unicoherent C-continuum that
is not arcwise connected?
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Characterisations

We have the following characterisations using the property C.

Theorem
1 An irreducible C-continuum is an arc. [B.E.Wilder, 1968]
2 A homogeneous C-continuum is a simple closed curve.

[B.E.Wilder, 1992]

Now from these we get the following fact:

Fact
Every hereditarily unicoherent C-continuum is arcwise
connected.
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Definition
A dendroid is an arcwise connected and hereditarily
unicoherent continuum.

From the previous fact we may notice the following
characterisation of dendroids:

Fact
A space X is a dendroid ⇐⇒ X is a hereditarily unicoherent
C-continuum.

Notation:
If X is a space then 2X ,C(X ) denote the hyperspaces of all
compact subsets of X and all subcontinua of X respectively.
Let I,C denote the unit interval [0,1] and the Cantor set
respectively.
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Coanalytic completeness

Definition
Let X be a space.

A set A ⊆ X is coanalytic hard if for any space Y and any
set B ∈ Π1

1(Y ) there exists a function f : Y −→ X such that
f−1[A] = B.
A coanalytic set A ⊆ X that is coanalytic hard is called
coanalytic complete.

The Hurewicz set H may be defined as follows:

H = {A ∈ 2C : (∀x ∈ A)for almost all n ∈ N, x(n) = 0}

It is a known fact that the Hurewicz set is coanalytic complete.
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Coanalytic complete classes of continua

Examples
It was proved that the following classes of continua are
coanalytic complete:

hereditarily decomposable continua in In,n ∈ {2,3, . . . ,∞}
[U.B. Darji, 2000];
strongly countable dimensional continua in I∞;
continua in I2 which do not contain an arc [these 2 are due
to P. Krupski, 2003];
dendroids in In,n ∈ {2,3, . . . ,∞} [R. Camerlo, U.B. Darji,
A. Marcone, 2005].
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Main result

Theorem
The set of all C-subcontinua of a cube In,n ∈ {2,3, . . . ,∞} is
coanalytic complete in C(In).

Proof.
We can see that the set of all C-subcontinua in In is coanalytic
when we write the formula defining it:

C = {K ∈ In : (∀x , y , z)(x 6= y , y 6= z, z 6= x ⇒
⇒ (∃L ∈ C(K ))x ∈ L ∧ ((y /∈ L, z ∈ L) ∨ (y ∈ L, z /∈ L)))}
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Coanalytic hardness

Proof.
To show that C is coanalytic hard, we use the fact that H is
coanalytic complete. Therefore it is enough to construct a
continuous function f : 2C −→ C(In) such that f−1[C] = H. First
we will construct a continuous function f ′ : C −→ C(In). The
aim for f ′ is to satisfy:

1 (∀x , y ∈ C)x 6= y ⇒ f ′(x) ∩ f ′(y) = {0} × I;
2 f ′(x)is arcwise connected⇐⇒ x(n) = 0 for almost all n;
3 f ′(x)is (almost) a topological sine curve⇐⇒ x(n) = 1 for

infinitely many n.
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Coanalytic hardness, continued

Proof.
Idea of construction:
For a sequence x ∈ C, let

f ′(x) =
⋂
k∈N
{’Strips’ Sx�k in the square} ∪ ({0} × I).

Strip Sx�k is defined so that it makes as many ’turns’ as there
are i ≤ k so that x(i) = 1. That way, if there are infinitely many
ones in x , then f ′(x) makes infinitely many ’turns’, so it is
(almost) a topological sine curve.
However, if almost all terms of x are 0, then at some point N
strips Sx�N ’stop turning’ and only become thinner, therefore in
this case f ′(x) is arcwise connected.
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Coanalytic hardness, continued

Proof.

Having defined f ′, let f : 2C −→ C(In) be defined as:

f (A) =
⋃

f ′[A] =
⋂
k∈N

⋃
x∈A

Sx�k ∪ ({0} × I)

Now we may verify that:
for A compact f (A) is a continuum;
f is continuous;
f−1[C] = H.

and this completes the proof.
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Corollaries

This proof also yields that:

Theorem
1 the set of CH-continua in In,n ∈ {2,3, . . . ,∞} is coanalytic

hard;
2 the set of dendroids in In is coanalytic hard.

Combining this with the fact that dendroids are hereditarily
unicoherent C-continua, we get the following:

Corollary

Set of all dendroids in In,n ∈ {2,3, . . . ,∞} is coanalytic
complete.
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